Some Limits of the Colored Jones Polynomials of the Figure-eight Knot
نویسنده
چکیده
We will study the asymptotic behaviors of the colored Jones poly-nomials of the figure-eight knot. In particular we will show that for certain limits we obtain the volumes of the cone manifolds with singularities along the knot.
منابع مشابه
The Colored Jones Polynomials and the Alexander Polynomial of the Figure-eight Knot
Abstract. The volume conjecture and its generalization state that the series of certain evaluations of the colored Jones polynomials of a knot would grow exponentially and its growth rate would be related to the volume of a threemanifold obtained by Dehn surgery along the knot. In this paper, we show that for the figure-eight knot the series converges in some cases and the limit equals the inve...
متن کاملThe Colored Jones Polynomials of the Figure-eight Knot and Its Dehn Surgery Spaces
Let K be a knot and JN (K; t) be the colored Jones polynomial of K in the three-sphere S corresponding to the N -dimensional representation of sl2(C) (see for example [4]). We normalize it so that JN (unknot; t) = 1. In [3], R. Kashaev introduced a series of numerical link invariants and proposed a conjecture that a limit of his invariants would determines the hyperbolic volume of the complemen...
متن کاملA Version of the Volume Conjecture
Abstract. We propose a version of the volume conjecture that would relate a certain limit of the colored Jones polynomials of a knot to the volume function defined by a representation of the fundamental group of the knot complement to the special linear group of degree two over complex numbers. We also confirm the conjecture for the figure-eight knot and torus knots. This version is different f...
متن کاملOn the characteristic and deformation varieties of a knot
The colored Jones function of a knot is a sequence of Laurent polynomials in one variable, whose nth term is the Jones polynomial of the knot colored with the n–dimensional irreducible representation of sl2 . It was recently shown by TTQ Le and the author that the colored Jones function of a knot is q–holonomic, ie, that it satisfies a nontrivial linear recursion relation with appropriate coeff...
متن کاملKnot state asymptotics II Witten conjecture and irreducible representations
This article pursues the study of the knot state asymptotics in the large level limit initiated in [CM11]. As a main result, we prove the Witten asymptotic expansion conjecture for the Dehn fillings of the figure eight knot. The state of a knot is defined in the realm of Chern-Simons topological quantum field theory as a holomorphic section on the SU2character manifold of the peripheral torus. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008